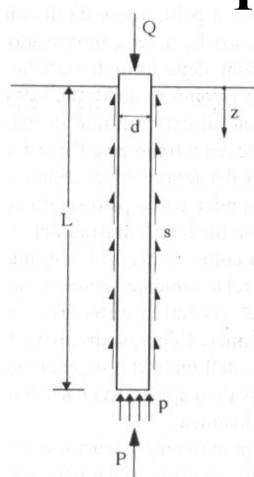

FONDAZIONI

ing. Nunziante Squeglia

CARICO LIMITE

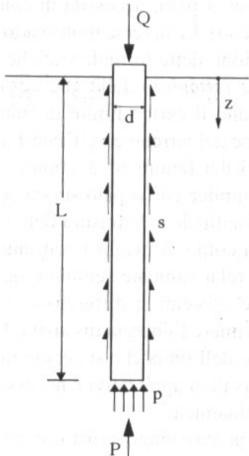
CARICO LIMITE DEL PALO SINGOLO Generalità


DETERMINAZIONE DEL CARICO LIMITE

Approcci disponibili:

- Formule statiche
- Formule empiriche
- Formule dinamiche
- Determinazione diretta (n° 7)

CARICO LIMITE Formule statiche

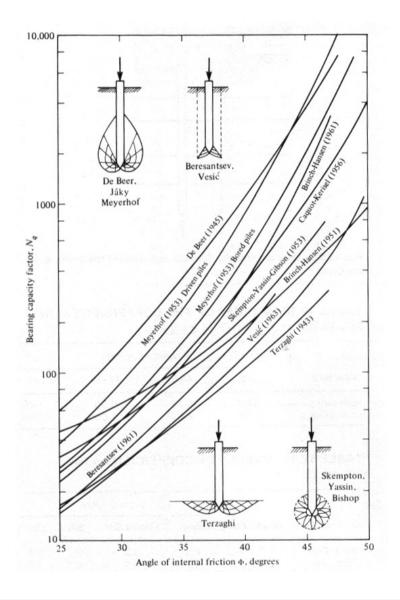


$$Q_{lim} = P + S = \frac{\pi d^2}{4} p + \pi d \int_0^L s \cdot dz$$

Suddivisione convenzionale tra P ed S

CARICO LIMITE

Formule statiche: resistenza alla punta



$$D) p = N_q \sigma'_{vL} + N_c c'$$

$$U) \qquad p = 1 \cdot \sigma_{vL} + N_c^0 c_u$$

CARICO LIMITE
Formule statiche:
resistenza alla punta

Valori di N_q secondo diverse teorie

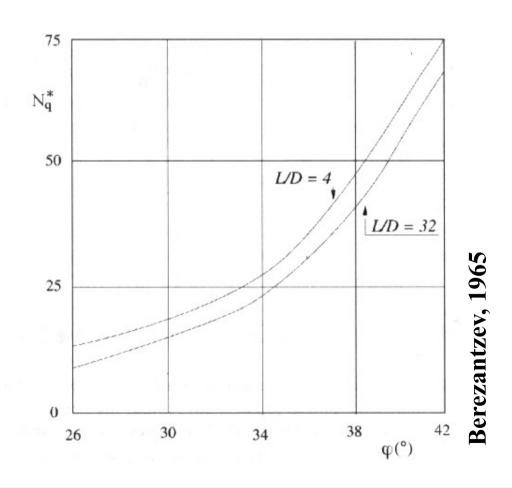
ing. Nunziante Squeglia

CARICO LIMITE Pali di grande diametro

$$Q_{lim} = P + S = \frac{\pi d^2}{4} p + \pi d \int_0^L s \cdot dz$$

S si mobilita per cedimenti di 1 ÷ 2 cm

P si mobilita per spostamenti di 0.15d (battuti) o 0.25d (trivellati)


CARICO LIMITE Pali di grande diametro (D)

Lo SLU di un palo di grande diametro è definito sulla base dei cedimenti

Berazantzev (1965) suggerisce 0.06d – 0.1d

$$\mathbf{p} = \mathbf{N}_{\mathbf{q}}^* \cdot \mathbf{\sigma'}_{\mathbf{vL}}$$

CARICO LIMITE Pali di grande diametro

Formule statiche: resistenza alla punta (U)

$$p_{lim} = 1 \cdot \sigma_{vL} + N_c c_u$$

Le teorie ad oggi disponibili portano a valori di N_c compresi tra 8 e 12.

Usualmente si considera un valore di 9.

CARICO LIMITEFormule statiche: resistenza laterale (D)

$$s_{lim} = \mu \cdot k \cdot \sigma'_{v0}$$

Tipo di palo	k (S)	k (D)	μ
Batt. profilato	0.7	1.0	0.36
Batt. tubo acc. chiuso	1.0	2.0	0.36
Batt. Cls prefabbricato	1.0	2.0	tan(0.75φ')
Batt. Cls gettato	1.0	3.0	tan(\phi')
Trivellato	0.5	0.4	tan(\phi')
Elica continua	0.7	0.9	tan(\phi')

CARICO LIMITE Formule statiche: resistenza laterale (U)

$$s = \alpha \cdot c_u$$

Tipo di palo	c _{u,ind} [kPa]	α
	c _u < 25	1.0
Battuto	$25 < c_u < 70$	$1-0.011(c_u-25)$
	$c_{\rm u} > 70$	0.5
	$c_u < 25$	0.7
Trivellato	$25 < c_u < 70$	0.7 - $0.008(c_u - 25)$
	$c_u > 70$	0.35

CARICO LIMITE

Correlazioni con prove in sito Prove SPT: resistenza alla punta

 $p = K \cdot N_{SPT} [MPa]$

Palo	Terreno	K	Fonte
	Sabbia	0,45	Martin et al, 1987
	Sabbia	0,40	Decourt, 1982
	Limo, limo sabbioso	0,35	Martin et al, 1987
Battuto	Limo glaciale	0,25	Thorburn, MacVicar, 1971
prefabbricato	Limo sabbioso residuale	0,25	Decourt, 1982
	Limo argilloso residuale	0,20	Decourt, 1982
	Argilla	0,20	Martin et al, 1987
	Argilla	0,12	Decourt, 1982
	Qualsiasi	0,30	Shioi, Fukui, 1982
Battuto gettato in opera	Incoerente	0,15	Yamashita, 1987 (p ≤ 7,5 MPa)
Trivellato	Sabbia	0,10	Shioi, Fukui, 1982
	Argilla	0,15	Shioi, Fukui, 1982

CARICO LIMITE Correlazioni con prove in sito Prove SPT: resistenza laterale

$$\mathbf{s} = \alpha + \beta \cdot \mathbf{N}_{SPT}$$
$$[\mathbf{kPa}]$$

Palo	Terreno	α	β	Note	Fonte
Battuto	Incoerente	0	2		Meyerhof, 1956 Shioi, Fukui, 1982
prefabbricato	Qualsiasi	10	3,3	$3 \le N \le 50$ s \le 170 kPa	Decourt, 1982
	Coesivo 0 10 Shioi, Fukui, 198	Shioi, Fukui, 1982			
Battuto gettato	Incoerente	30 0	5	s ≤ 200 kPa	Yamashita, 1987 Shioi, Fukui, 1982
in opera	Coesivo 0 5 $s \le 150$ kPa Yamashita, 19	Yamashita, 1987 Shioi, Fukui, 1982			
	Incoerente	0	1	A	Findlay, 1984 Shioi, Fukui, 1982
Trivellato		0	3,3		Wright, Reese, 1979 Shioi, Fukui, 1982
1 200 4 100 400	Coesivo	0 10	5 3,3	Per pali in fango	Decourt, 1982
				$3 \le N \le 50$ s \le 170 kPa	

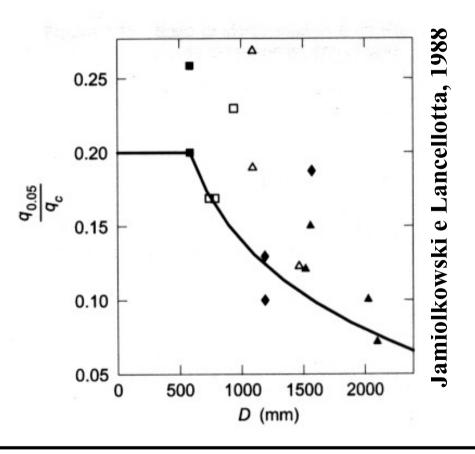
CARICO LIMITE Correlazioni con prove in sito (GG)

Prove CPT: resistenza alla punta

Pali battuti

$$\mathbf{p} = \mathbf{q_c}$$

 q_c = valore medio tra L + d ed L – 4d

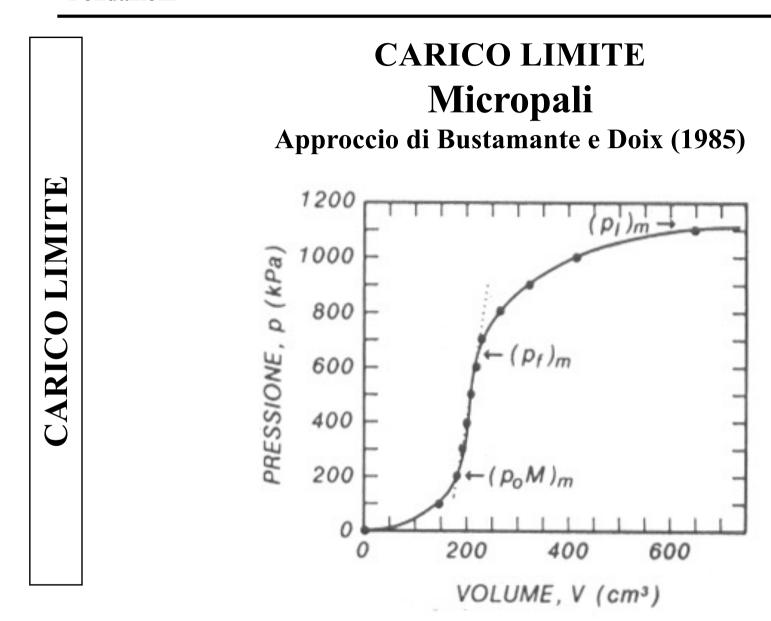

Correlazioni con prove in sito (GG) Prove CPT: resistenza laterale Pali battuti

$$\mathbf{s} = \mathbf{\alpha} \cdot \mathbf{q_c}$$

Stato di addensamento	q _c (MPa)	α
Molto sciolto	< 2	0,020
Sciolto	2 ÷ 5	0,015
Medio	5 ÷ 15	0,012
Denso	15 ÷ 25	0,009
Molto denso	> 25	0,007

CARICO LIMITE Pali trivellati

 $q_{0.05}$ carico unitario alla punta per un cedimento di 0.05d


CARICO LIMITE Micropali

Approccio di Bustamante e Doix (1985)

Tipo di formazione del micropalo:

- Radice IGU iniezione unica
- Tubfix IRS iniezione ripetuta

Metodo basato su prove pressiometriche o SPT

CARICO LIMITE Micropali

Approccio di Bustamante e Doix (1985)

$$\mathbf{Q_{lim}} = \mathbf{P} + \mathbf{S} = \mathbf{P} + \pi \cdot \mathbf{d_s} \cdot \mathbf{L_s} \cdot \mathbf{s}$$

$$P = 0.15 \cdot S$$
 (o trascurata)

$$\mathbf{d}_{\mathbf{s}} = \mathbf{\alpha} \cdot \mathbf{d}$$

CARICO LIMITE Micropali

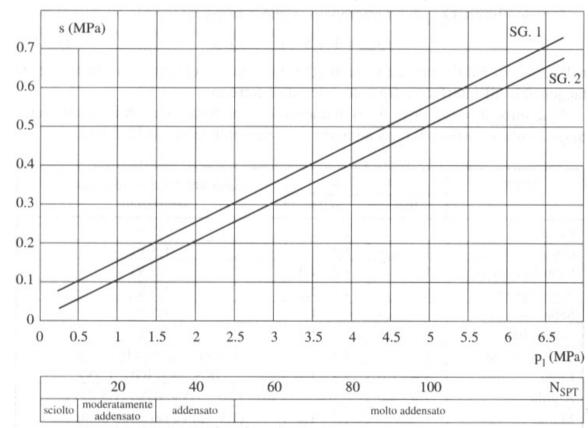
Approccio di Bustamante e Doix (1985)

Terreno	Valor	i di α	Quantità minima di miscela	
	IRS	IGU	consigliata	
Ghiaia	1,8	1,3 - 1,4	1,5 V _s	
Ghiaia sabbiosa	1,6 - 1,8	1,2 - 1,4	1,5 V _S	
Sabbia ghiaiosa	1,5 - 1,6	1,2 - 1,3	1,5 V _S	
Sabbia grossa	1,4 - 1,5	1,1 - 1,2	1,5 V _S	
Sabbia media	1,4 - 1,5	1,1 - 1,2	1,5 V _S	
Sabbia fine	1,4 - 1,5	1,1 - 1,2	1,5 V _S	
Sabbia limosa	1,4 - 1,5	1,1 - 1,2	IRS: (1,5 - 2)V _S ; IGU: 1,5 V _S	
Limo	1,4 - 1,6	1,1 - 1,2	IRS: 2V _S ; IGU: 1,5V _S	
Argilla	1,8 - 2,0	1,2	IRS: (2,5 - 3)V _S ; IGU: (1,5-2)V _S	
Marne	1,8	1,1 - 1,2	(1,5 - 2)V _S per strati compatti	
Calcari marnosi	1,8	1,1 - 1,2		
Calcari alterati o fratturati	1,8	1,1 - 1,2	(2 - 6)V _S o più per strati fratturati	
Roccia alterata e/o fratturata	1,2	1,1	(1,1-1,5)V _S per strati poco fratturati 2V _S o più per strati fratturati	

CARICO LIMITE Micropali

Approccio di Bustamante e Doix (1985)

Determinazione della resistenza unitaria, s


Terreno	Tipo di iniezione		
Terreno	IRS	IGU	
Da ghiaia a sabbia limosa	SG1	SG2	
Limo e argilla	AL1	AL2	
Marna, calcare marnoso, calcare tenero fratturato	MC1	MC2	
Roccia alterata e/o fratturata	≥R1	≥ R2	


CARICO LIMITE Micropali

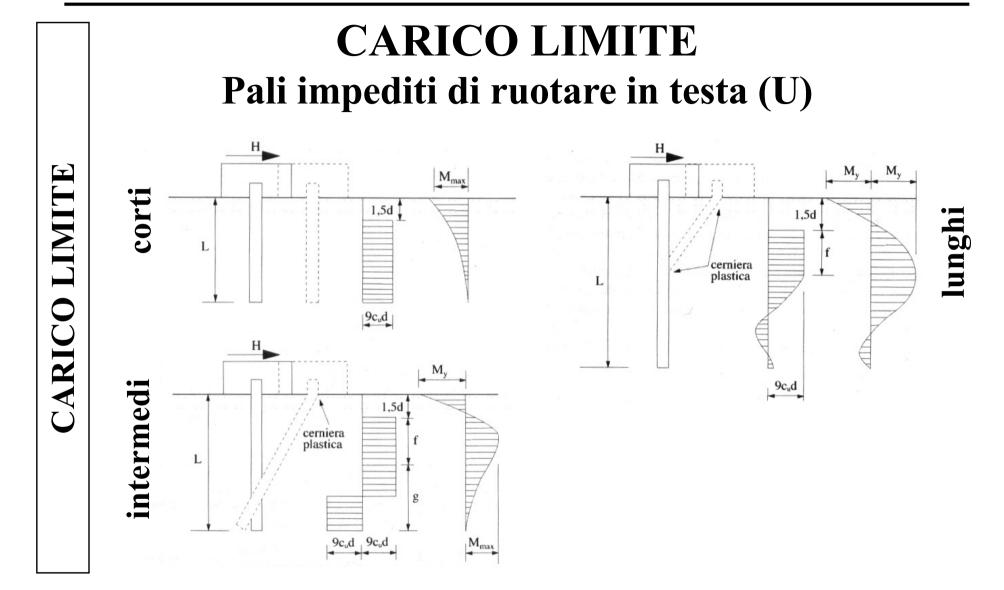
Approccio di Bustamante e Doix (1985)

Sabbie limose

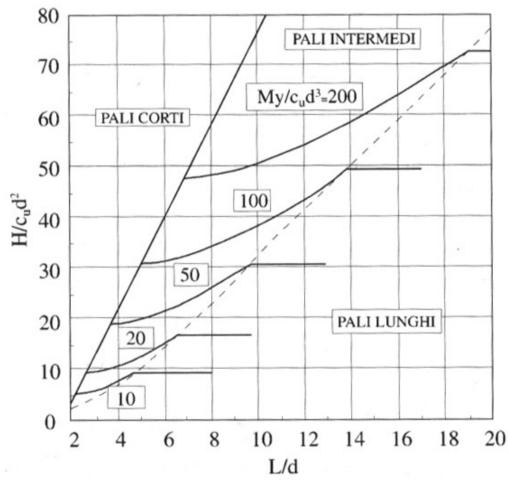
Ghiaie

CARICO LIMITE Pali soggetti a forze orizzontali

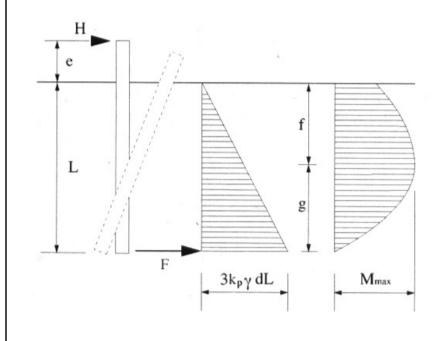
Broms (1964)

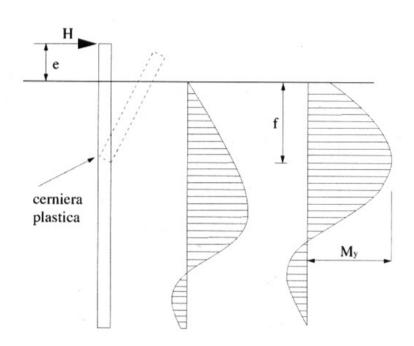

- terreno rigido plastico
- palo verticale
- terreno omogeneo
- palo rigido plastico

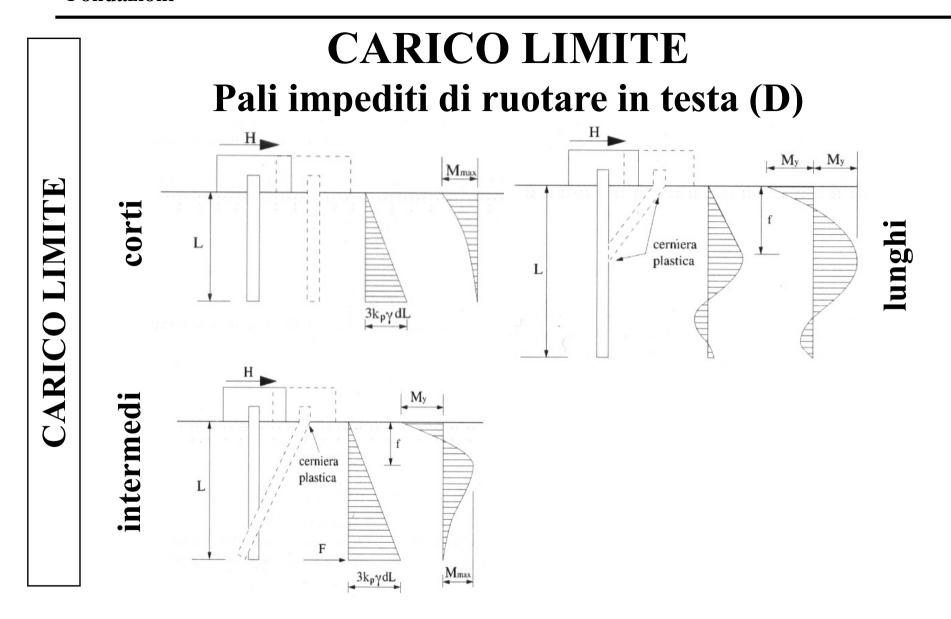
CARICO LIMITE


Pali soggetti a forze orizzontali Broms (1964): reazioni del terreno (U, D)

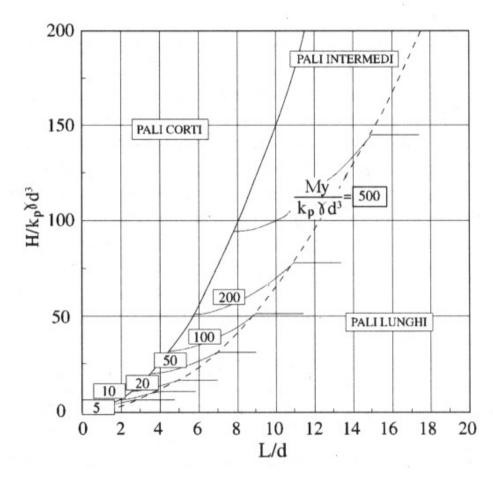
CARICO LIMITE Pali soggetti a forze orizzontali Meccanismi per pali liberi in testa (U) CARICO LIMIT 1,5d 1,5d cerniera plastica 9c_ud Mmax Mmax corti lunghi

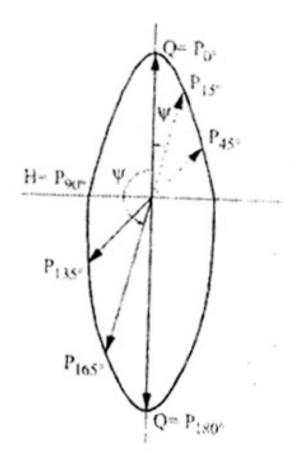



Abaco per la determinazione di H_{lim} Pali impediti di ruotare in testa (U)



CARICO LIMITE


Pali soggetti a forze orizzontali Meccanismi per pali liberi in testa (D)


Abaco per la determinazione di H_{lim} Pali impediti di ruotare in testa (D)

Combinazione delle azioni orizzontali e verticali (Cho & Kulhawy, 1995)

$$Q = Q_{lim}^{s} \left(\frac{\Psi}{90} - 1 \right) + Q_{lim}^{b} \left(\frac{\Psi}{90} - 1 \right)^{7.3}$$

$$H = H_{lim} \sqrt{sen\Psi}$$

CARICO LIMITE Effetto del gruppo di pali

Il carico limite di un gruppo di pali non è il prodotto del carico limite del palo singolo per il numero di pali

 $\mathbf{Q}_{\text{lim,gruppo}} = \mathbf{N} \cdot \mathbf{E} \cdot \mathbf{Q}_{\text{lim,singolo}}$

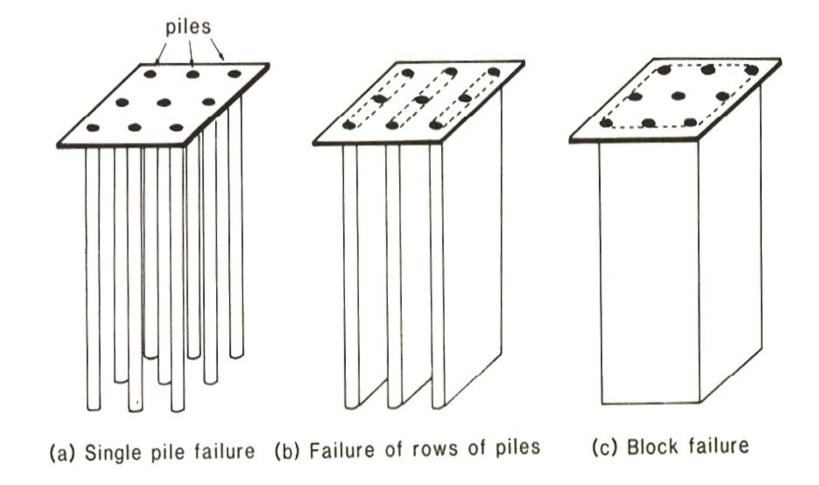
Vesic (1968): per terreni incoerenti E > 1, cautelativamente E = 1

CARICO LIMITE Effetto del gruppo di pali – terreni coesivi

Converse - Labarre

$$E = 1 - \frac{\arctan(d/i)}{\pi/2} \cdot \frac{(m-1) \cdot n + (n-1) \cdot m}{m \cdot n}$$

Terzaghi - Peck


$$Q_{gruppo} = B_1 B_2 (N_c c_u + \gamma L) + 2(B_1 + B_2) L c_u$$

Effetto del gruppo di pali – terreni coesivi Terzaghi – Peck: Coefficiente N_c

L/B ₂	1	Nc
	$B_1/B_2 = 1$	$B_1/B_2 > 10$
0,25	6,7	5,6
0,50	7,1	5,9
0,75	7,4	6,2
1,00	7,7	6,4
1,50	8,1	6,8
2,00	8,4	7,0
2,50	8,6	7,2
3,00	8,8	7,4
≥ 4	9,0	7,5

$$N_{c,rett} = N_{c,\infty} (1 + 0.2B_2/B_1)$$

CARICO LIMITE SOTTO CARICHI ORIZZONTALI Effetto del gruppo

CARICO LIMITE SOTTO CARICHI ORIZZONTALI Effetto del gruppo $H_{\underline{gruppo}}$ Kotthaus & Jessberger '94 (1x3,sabble,3D) Kotthaus & Jessberger '94 (1x3,sabble,4D) McVay et al. '95 (3x3, sabbia sciolta) McVay et al. '95 (3x3, sabbla densa) pali liberi di ruotare in testa Remaud et al. '98 (1x2, sabble, 2D) efficienza (%) Remaud et al. '98 (1x2, sabble, 4D) 70 60 50 0,25 y/D

ing. Nunziante Squeglia

CARICO LIMITE SOTTO CARICHI ORIZZONTALI Efficienza (Reese & Van Impe, 2001)

CARICO LIMITE

$$e_{A} = 0.70 \left(\frac{s}{D}\right)^{0.26}$$

$$\frac{s}{D} \le 4$$

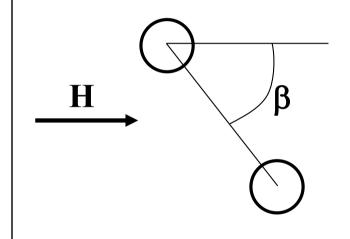
$$\rightarrow$$
 (B) (A)

$$e_{\rm B} = 0.48 \left(\frac{\rm s}{\rm D}\right)^{0.38}$$

$$\frac{s}{D} \le 7$$

Se s/D > (4 o 7) allora e = 1

CARICO LIMITE SOTTO CARICHI ORIZZONTALI Efficienza (Reese & Van Impe, 2001)


H —

$$e = 0.64 \left(\frac{s}{D}\right)^{0.34}$$

$$\frac{s}{D} \le 3.75$$

Se s/D > 3.75 allora e = 1

CARICO LIMITE SOTTO CARICHI ORIZZONTALI Efficienza (Reese & Van Impe, 2001)

$$e = \sqrt{e_{lin}^2 \cdot \cos^2 \beta + e_{aff}^2 \cdot sen^2 \beta}$$

CARICO LIMITE SOTTO CARICHI ORIZZONTALI Efficienza (Reese & Van Impe, 2001)

\bigcirc

$$\bigcirc$$
 \bigcirc \bigcirc \bigcirc

$$e_{j} = \prod_{i=1}^{m} e_{ij}$$

gruppo di m pali