WORKSHOP ON RESILIENT LEVEES

UPC-CIMNE potential contributions

30 JUNE 2017, UNIVERSITY OF PISA

Outline

- Numerical applications (levee related)
 - Soil atmosphere interaction (railway embankment)
 - Overtopping
 - Site investigation
- Kratos
- Erosion testing channels

Soil-atmosphere interaction

- CODE BRIGHT (THM FEM)
- Atmospheric boundary condition
 - fluxes of air, water and energy deduced from the atmospheric data and the model state near the boundary.
 - Example: water flux

Water flux at the atmospheric boundary

In general, the flux of water j_w is considered as the sum of precipitation $P_{\rm r}$, evaporation $j_{\rm E}$, flux of vapour advected by air $j_{\rm o}^{\rm w}$ and surface run-off j_{sr} . In this case, the advective flux of vapour j_{α}^{w} is neglected and therefore

11.
$$j_{\rm w} = P_{\rm r} + j_{\rm E} + j_{\rm sr}$$

Surface run-off is activated by saturation $(P_1 > P_{ga})$ and driven by positive soil water pressure. The evaporative flux $j_{\rm E}$ is proportional to the difference in atmospheric water vapour density (ρ_{va}^{atm}) and the atmospheric vapour density at the boundary elements ($\rho_{\rm v}$) computed from relative humidity data

12. $j_{\rm E} = \beta_{\rm g} (\rho_{\rm va}^{\rm atm} - \rho_{\rm v})$

6 where β_{α} is an aerodynamic diffusion coefficient, a function of the wind velocity v_a , which is von Karman's constant, the roughness length and the height at which v_a and ρ_{va}^{atm} are measured (Louis, 1979). To represent a membrane at a boundary, P_r and j_E are set to 0. Pérez-Romero et al (2016)

10º Simposio Nacional

Soil-atmosphere interaction

Andalucia (hot & dry)

A Coruña, 2016

10º Simposio Nacional

SEMR SEMSIG SPG

10º Simposio Nacional

Basque coast (cold & wet)

5⁸⁵ Jornadas Luso-Españolas de Geotecnia

Altura desde la base del relleno [m]

Drying within

10º Simposio Nacional

5ë Jornadas Luso-Españolas de Geotecnia

Andalucia nf 2 m 10 years

10º Simposio Nacional

Post-construction settlements

Soil –atmosphere interaction

- Currently working on
 - large scale field test
 - representation of the vegetation effect on ET

Outline

- Numerical applications (levee related)
 - Soil atmosphere interaction (railway embankment)
 - Overtopping
 - Site investigation
- Kratos
- Erosion testing channels

Numerical and Experimental Study of Failure of Rockfill Dams under Extreme Events

<u>Antonia Larese</u>, Riccardo Rossi, Eugenio Oñate, M.A. Toledo, R. Morán, H. Campos

Overtopping in rockfill dams

Overtopping is still one of the principal causes of failure of embankment dams

Incoherent material

What does it happen if a rockfill dam is overtopped?

- Seepage inside the downstream shoulder
- External **erosion** of the downstream toe
- Instability of the downstream shoulder

Current regulation considered the dam failed once overtopping begins, once the first drop crosses the crest of the dam

Failure in a rockfill dams IS NOT A SUDDEN PHENOMENON In order to get to the failure of the dam:

- Overtopping
- TIME

We need a better knowledge of what is going on in the downstream shoulder when overtopping begins in order to reduce the "safety factor" we are now adopting

Overtopping: how to study its consequences?

PHYSICAL MODELING

To save time and money To overcome scale effects

NUMERICAL MODELING

To calibrate the models To have realistic and valuable results

ETS de Ingenieros de Caminos Canales y Puertos UPM Miguel Á. Toledo, Hibber Campos, Ricardo M. Alves, Rafael Morán

Y Centro de Estudios hidrográficos de CEDEX

Ángel Lara and Rafael Cobo

The experimental channel is equipped with:

- 85 hydraulic piezometers
- three ultrasonic limnimeters
- The experimental channel is equipped with a robotized laser profile meter that allows to obtain a Digital Terrain Model (DTM) of the tested rockfill dam at any moment of the failure process

18

NUMERICAL MODELING

CIMNE

Centre Internacional de Mètodes Numèrics en Enginyeria

Mathematical modeling

Objective:

• Evaluation the hydrodynamic forces on the rockfill during an overtopping

Basic ingredients:

- Variable incoming conditions
- Flow in porous media (rockfill)
- Free surface flow in the clear fluid region
- Transient regime

n=0.37 D =0,085m n=0.37 D =0,3m

Seepage in soils vs seepage in rockfill

Seepage in soil

- Low permeability
- Pore pressure plays an important role
- Very **slow** phenomenon (order of week, months, years)
- Laminar flow
- Governed by Darcy law (linear resistance law)

Seepage in rockfill

- High permeability
- Pores are big and interconnected
- Very fast phenomenon (order of minutes, hours)
- Turbulent flow
- Governed by a non linear resistance law

Seepage in rockfill

Seepage in rockfill

• "Macro scale" for global overtopping simulation

 $\begin{array}{l} \partial_t \mathbf{u} + \overline{\mathbf{u}} \cdot \nabla \mathbf{u} + n \nabla p - 2 \nabla \cdot \nu \nabla^s \mathbf{u} \\ -\mathbf{b}n + \alpha \mathbf{u} + \beta \mathbf{u} \cdot \mathbf{u} = \mathbf{0} \text{ in } \Omega, \ t \in (0, T); \\ \nabla \cdot \mathbf{u} = \mathbf{0} \text{ in } \Omega, \ t \in (0, T). \end{array}$

- Modified form of the Navier Stokes equation to take into account the presence of porous material
- Non linear resistance law inserted in the governing equations (Forchheimer type)

$$\mathbf{i} = \alpha \mathbf{u} + \beta \mathbf{u}^2;$$

• α and β can be arbitrary chosen by the users

Validation: Permeameter

Validation: small scale dams

CIMNE⁹

Validation: small scale dams

CIMNE

Evaluation of the dam breaching

The CFD code can be coupled with <u>ANY structural code</u> for the calculation of the structural response

- The material is rigid until reaching the yield stress
- No recoverable deformation (no elastic behavior)
- After reaching yield stress, it flows like a fluid
- No need of tracking historical variables
- Large deformations occur

Non-Newtonian constitutive model

The Particle Finite Element Method (PFEM) is employed to naturally follow the large deformation of the material

- Larese, A.; Rossi, R.; Idelsohn, S.R.; Oñate, E.A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Computational mechanics.50 - 6,pp. 805 - 819. (2012). ISSN 0178-7675
- Larese, A. A coupled Eulerian-PFEM model for the simulation of overtopping in rockfill dams Phd thesis: Universitat Politècnica de Catalunya (UPC BarcelonaTech), Barcelona, Spain, 2012

CONSTITUTIVE MODEL

VISCO-RIGID CONSTITUTIVE LAW FOR THE ROCKFILL SLOPE

 $\begin{array}{ll} if & \tau < \tau_0 \\ if & \tau \geq \tau_0 \end{array}$ $\dot{\gamma} = 0$ Bingham plastic Newtonian fluid $\left(1-e^{-m\dot{\gamma}}\right)\dot{\gamma}$ τ_0 Regularized models SHEAR STRESS Yield stress defined using a m Mohr Coulomb failure criteria $\mathcal{T}_0 = p_s' tg \phi$ 2.4464 2.1406 1.8348 1.529 1.2252 0.91738 0.61159 0.30579 RATE OF STRAIN y x $\tau = \left[\mu + \frac{p'_s t g(\phi)}{\dot{\gamma}} \left(1 - e^{-m\dot{\gamma}} \right) \right] \dot{\gamma}$ VARIABLE YIELD MODEL CIMNE

BENEGHAMZENDEDENGHAM MODEL

Coupled model

CIMNE⁹

Larese, A.; Rossi, R.; Oñate, E. Coupling Eulerian and Lagrangian models to simulate seepage and evolution of failure in prototype rockfill dams. Proceedings of the XI ICOLD Benchmark Workshop on Numerical Analysis of Dams. ISBN 978-84-695-1816-8, Valencia, Spain (2011).

29

Validation: coupled problem

•*Porosity* = 0.4052; •Pore index = 0.68;

- •Apparent specific weight = 2.50 gr/cm^3
- Dry density = 1.49 gr/cm^3
- •Saturated density = 1.91 gr/cm^3
- • $D_{50} = 35.04$ mm.


```
STRUCTURE (PFEM)
```


DISPLACEMENT STRUCTURE

A node is considered MOVED if DISPLACEMENT > 30mm

Homogeneous dam.

NUMERICAL

EXPERIMENTAL

Advance of failure

B: ADVANCE OF FAILURE horizontal distance of the

PFEM is evolving towards soils

- Cam-Clay, MC and other models being implemented
- Applications to In situ test but also <u>levees</u>

Cone penetration test. Net cone resistance and water pressure at the three measurement positions in terms of the normalized penetration depth. Selection of the smooth cases with Ko = 0.5

Larese A. - Numerical and Experimental Study of Failure of Rockfill Dams under

References

Antonia Larese antoldt@cimne.upc.edu

- Larese, A.; Rossi, R.; Idelsohn, S.R.; Oñate, E. A coupled PFEM-Eulerian approach for the solution of porous FSI problems. Computational mechanics.50 6,pp. 805 819. (2012). ISSN 0178-7675.
- Rossi, R.; Larese, A.; Dadvand, P.; Oñate, E. An efficient edge-based level set finite element method for free surface flow problems. International journal for numerical methods in fluids. 71-6, pp.687-716 (2012). Larese, A.; Rossi, R.; Oñate, E.; Toledo, M.A.; Moran, R., Campos, H., Numerical and experimental study of overtopping and failure of rockfill dams. International Journal of Geomechanics (ASCE) 15 (4)
- Larese, A., Rossi, R., Oñate, E., Finite Element Modeling of free surface flow in variable porosity media. Archives for Numerical Methods in Engineering DOI: 10.1007/s11831-014-9140-x.
- Salazar, F., Irazabal, J., Larese, A. and Oñate, E. Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model International Journal for Numerical and Analytical Methods in Geomechanics (2015) DOI: 10.1002/nag.2428
- Larese, A.; Rossi, R.; Oñate, E., Toledo, M.; Physical and numerical modelization of the behaviour of rockfill dams during overtopping scenarios. Dam Maintenance and Rehabilitation II. pp. 479 - 487.CRC Press, 2010. ISBN 978-0415616485 (2011)
- Larese, A.; Rossi, R.; Oñate, E., Simulation of the beginning of failure in rockfill dams caused by overtopping.
 Dam Protection against Overtopping and Accidental Leakage, Eds. Toledo, Moran & Oñate Taylor & Francis group London ISBN 978-1-138-02808-1, pp. 111-118, (2015).

34

Outline

- Numerical applications (levee related)
 - Soil atmosphere interaction (railway embankment)
 - Overtopping
 - Site investigation
- Kratos
- Erosion testing channels

Penetration tests in siliceous sand

Tests in instrumented INPG calibration chamber

Penetration tests in siliceous sand

Parameter calibration: Fontainebleau sand

Modelling the penetration test

Effect of crushing

Arching around the shaft

Outline

- Numerical applications (levee related)
 - Soil atmosphere interaction (railway embankment)
 - Overtopping
 - Site investigation
- Kratos
- Erosion testing channels

Kratos is a framework for building multi-disciplinary (MULTI-PHYSICS) finite element programs. It provides several tools for fast implementation of finite element applications. CFD, CSD, Thermally Coupled Problems, Particles, ...

OPEN SOURCE

PARALLEL HPC

The dynamic nature of KRATOS itself is the principal reason of the continued evolution. High performance computing in an OpenMP/MPI - based software.

FLEXIBILITY

Kratos can be used with research purposes or by engineers looking for a solution to complex industrial problems

KRATOS – Core-Application approach

www.cimne.com/kratos

KRATOS APPLICATIONS: Contains the physics

KRATOS – Core-Application approach

www.cimne.com/kratos

Outline

- Numerical applications (levee related)
 - Soil atmosphere interaction (railway embankment)
 - Overtopping
 - Site investigation
- Kratos
- Erosion testing channels

Laboratory (LIM)

- Channel for erosion studies
- Applied for coastal engineering but also overtopping
- 100m long, 3m wide and 5m deep
- Advanced sensorization

Transducer array covering 2.0 m

Sonar sediment erosion and water velocity profiling

Optical bed profiling

And a collaborator

• The end....

A collaborator...

Josep Raventós*, Marcos Arroyo†

* TRE ALTAMIRA, Carrer Còrsega 381-387. 08037 BARCELONA, SPAIN. josep.raventos@trealtamira.com † DECA- UPC, BARCELONA, SPAIN

